A novel variant in AIRE causing a rare, non‑classical autoimmune polyendocrine syndrome type 1.

Related Articles

A novel variant in AIRE causing a rare, non‑classical autoimmune polyendocrine syndrome type 1.

Mol Med Rep. 2020 Jun 12;:

Authors: Zheng WB, Li LJ, Zhao DC, Wang O, Jiang Y, Xia WB, Li M

Abstract
Autoimmune polyendocrine syndrome type 1 (APS‑1) is a rare inherited autoimmune disease, characterized by a classic triad, including chronic mucocutaneous candidiasis, primary adrenocortical insufficiency and hypoparathyroidism. The present study investigated phenotypes and pathogenic variants in a Chinese woman with non‑classical APS‑1. Disease‑associated variants in a patient with APS‑1 were identified via targeted next generation sequencing and the variant was confirmed via Sanger sequencing. Serum levels of calcium, phosphorus, parathyroid hormone (PTH), follicle‑stimulating hormone (FSH), luteinizing hormone (LH), estradiol and urinary levels of calcium were measured. Blood count assays and bone marrow morphology were investigated. The patient was a 32‑year‑old woman who had suffered from typical carpopedal spasms since she was 7 years old. She developed syncope, primary amenorrhea, intermittent diarrhea and general fatigue in subsequent years. Hypocalcemia, hyperphosphatemia, low levels of PTH and estradiol, elevated levels of FSH and LH, and absence of erythroblasts were observed, which indicated hypoparathyroidism, primary ovarian insufficiency and pure red cell aplasia. A novel heterozygous missense variant (NM_000383.2: c.623G>T, NP_000374.1: p.Gly208Val) in exon 5 of autoimmune regulator and a reported variant (NM_000383.2: c.371C>T, NP_000374.1: p.Pro124Leu) in exon 3 were detected, of which the c.623G>T variant may be a pathogenic variation that induces APS‑1. Under a regular follow‑up and therapeutic adjustment of calcium, calcitriol, hormone replacement therapy and methylprednisolone, the endocrine function and clinical symptoms of the patient were notably improved. The results of the present study expand the known genetic and phenotypical spectra of APS‑1.

PMID: 32627016 [PubMed - as supplied by publisher]