Affinity of Mycobacterium tuberculosis strains for M059K microglial cells after migration through A549 alveolar epithelium

Eur J Clin Microbiol Infect Dis. 2021 Apr 9. doi: 10.1007/s10096-021-04226-1. Online ahead of print.


Tuberculosis (TB) remains a major threat worldwide while central nervous system TB (CNS-TB) is one of the most severe forms of extrapulmonary TB. CNS-TB develops as a secondary infection during the hematogenous spread of Mycobacterium tuberculosis (M. tuberculosis) from the lungs to the CNS. Factors influencing the dissemination of the bacilli to the CNS have not been studied extensively. This study evaluated the transmigration ability through the alveolar epithelium and adhesion and invasion capacity of glial cells of M. tuberculosis strains of varying drug susceptibility and genotype profiles using an in vitro co-culture model. A549 alveolar epithelial cells and M059K glial cells were co-cultured in a Transwell plate with A549 cells cultured in the upper chamber and M059K glial cells in the lower chamber. A549 epithelial cells were infected with F15/LAM4/KZN (susceptible, MDR, XDR), Beijing (susceptible, XDR), F11 (susceptible), F28 (MDR), and H37Rv strains of M. tuberculosis. The transmigration of an A549 monolayer and subsequent adhesion and invasion rates of M059K cells were established. The susceptible and XDR variants of the F15/LAM4/KZN strain transmigrate the alveolar epithelial cell monolayer more efficiently than the MDR variant. The Beijing-XDR variant showed a high transmigration rate, while the susceptible variant showed no transmigration ability. Similar to the MDR F15/LAM4/KZN, the F28 and F11 strains showed a low dissemination ability. The bacteria were still capable to adhere to M059K glial cells after passage through the A549 cells. We conclude that M. tuberculosis isolates that passed through a monolayer of A549 alveolar epithelium by transcellular migration can still adhere to M059K glial cells. There is no genetic link between resistance and transmigration.

PMID:33834319 | DOI:10.1007/s10096-021-04226-1