Currently browsing category

J Pept Sci

Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida  albicans.

Related Articles

Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida  albicans.

J Pept Sci. 2015 Oct 16;

Authors: Mora-Navarro C, Caraballo-León J, Torres-Lugo M, Ortiz-Bermúdez P

Abstract
Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. β-peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a β-peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole-resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA-based method and the mass-action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole-resistant biofilms and fluconazole resistant C. albicans strain was obtained. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

PMID: 26470850 [PubMed – as supplied by publisher]

Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions.

Related Articles

Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions.

J Pept Sci. 2015 Aug 27;

Authors: Rajasekaran G, Kamalakannan R, Shin SY

Abstract
Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL. TL-1 and TL-4 showed a little increase in antimicrobial selectivity, while TL-2 and TL-3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti-inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor-α (TNF-α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti-inflammatory activity is as follows: TL-2 ≈ TL-3 ≈ TL-4 > TL-1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti-inflammatory activity. These results apparently suggest that the anti-inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti-inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram-negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

PMID: 26311041 [PubMed – as supplied by publisher]