Comparison of In Vivo Transportability of Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Agents Into Intracellular and Extracellular Tissue Spaces in Rats.

Related Articles

Comparison of In Vivo Transportability of Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Agents Into Intracellular and Extracellular Tissue Spaces in Rats.

J Pharm Sci. 2020 Oct 24;:

Authors: Kobuchi S, Kita Y, Hiramatsu Y, Sasaki K, Uno T, Ito Y, Sakaeda T

Abstract
The pathogenic bacterium Staphylococcus aureus can penetrate host cells. However, intracellular S. aureus is not considered during antimicrobial agent selection in clinical chemotherapy because of the lack of information about drug transportability into cells in vivo. We focused on agents used to treat methicillin-resistant S. aureus (MRSA) (vancomycin, arbekacin, linezolid, and daptomycin) and indirectly assessed the drug levels in intracellular compartment using plasma, tissue homogenates, and interstitial fluid (ISF) samples from the skin of rats using the microneedle array technique. Lower drug levels were observed in the ISF than in the plasma for daptomycin but extracellular and intracellular drug levels were comparable. In contrast, vancomycin, arbekacin, and linezolid showed higher concentrations in the ISF than in the plasma. Intracellular transport was estimated only for arbekacin. Stasis of vancomycin in the ISF was also observed. These results suggest that both low vancomycin exposure against intracellular S. aureus infection and long-term subinhibitory drug levels in the ISF contribute to the failure of treatment and emergence of antibiotic resistance. Based on its pharmacokinetic characteristics in niche extravascular tissue spaces, arbekacin may be suitable for achieving sufficient clinical outcomes for MRSA infection because the drug is widely distributed in extracellular and intracellular compartments.

PMID: 33164810 [PubMed - as supplied by publisher]