Design and characterization of PANI/starch/Fe<sub>2</sub>O<sub>3</sub> bio composite for wastewater remediation

Int J Biol Macromol. 2021 Mar 10:S0141-8130(21)00560-2. doi: 10.1016/j.ijbiomac.2021.03.043. Online ahead of print.

ABSTRACT

A new synthesized polyaniline/starch/hematite bio composite (PANI/S/Fe2O3 BC) has been studied as an effective material for on-site water remediation. PANI/S/Fe2O3 BC was developed by combining the techniques of co-precipitation and interfacial polymerization in the presence of aqueous starch solution in an acidic medium under ultrasonic irradiation. The nano-morphologies and structures of the designed PANI/S/Fe2O3 BC were evaluated by various techniques relative to PANI and Fe2O3 nanoparticles. In single and multiple systems, PANI/S/Fe2O3 BC was evaluated as a possible adsorbent for different heavy metals, including As3+, Zn2+, and Co2+, relative to PANI and Fe2O3 nanoparticles. In terms of pH value, operating temperature, initial heavy metal concentration, contact time, adsorbent dose and competitive ions in the solutions, the adsorption process was optimized. For 92% overall adsorption of Co2+ and 100% overall adsorption of both As3+ and Zn2+, the adsorption equilibrium was achieved within 60 and 120 min, respectively. In addition, adsorption thermodynamic analysis shows that the As3+ ions adsorption process was not random and the pseudo-second-order fitted with experimental results. Moreover, PANI/S/Fe2O3 BC was evaluated as an antibacterial agent against Gram-negative bacteria (Salmonella typhimurium) and Gram-positive bacteria (S. aureus, Methicillin-Resistant Staphylococcus, Aureus Clinical isolate and Bacillus subtilis). The reported performances indicated that the PANI/S/Fe2O3 BC is a potent candidate for industrial water bioremediation.

PMID:33713774 | DOI:10.1016/j.ijbiomac.2021.03.043