Enhanced antibacterial activity of Egyptian local insects’ chitosan-based nanoparticles loaded with ciprofloxacin-HCl.

Related Articles

Enhanced antibacterial activity of Egyptian local insects' chitosan-based nanoparticles loaded with ciprofloxacin-HCl.

Int J Biol Macromol. 2018 Dec 22;:

Authors: Marei N, Elwahy AHM, Salah TA, El Sherif Y, El-Samie EA

Abstract
Chitosan (CS), possess enormous properties, being biodegradable, biocompatible, and antimicrobial. CS could be formulated and casted into different forms including 2D films, hydrogels, and nanoparticles. Chitosan-based nanoparticles (CSNPs) showed countless interest as polymeric drug delivery system (DDS) with its improved bioavailability, and stability when compared with traditional DDS. Ciprofloxacin is a prescribed antibiotic for many diseases, but its efficiency was affected by antibacterial resistance. Therefore, in this study, CSNPs loaded with ciprofloxacin (Cipro/CSNPs) were prepared from CS isolated from desert locusts, beetles, honey bee exoskeletons, and shrimp shells were used as a standard control. CSNPs were formulated by ionic crosslinking method, then loaded with ciprofloxacin HCl, and characterized using particle size distribution, zeta potential, and drug entrapment efficiency. The release of ciprofloxacin from CSNPs was evaluated and its kinetic modelling was performed. Antibacterial activity of CSNPs was evaluated against Escherichia coli, Bacillus thuringiensis, Methicillin-resistant Staphylococcus aureus (MRSA) and, Pseudomonas aeruginosa. Minimum inhibitory concentrations (MIC) were determined and compared between chitosan sources. The Cipro/CSNPs results indicate that the highest antibacterial activity against E. coli and MRSA with MIC varying from 0.0043 to 0.01 μg/ml and from 0.07 to 0.14 μg/ml, respectively. In addition, CSNPs enhanced drug delivery, and allowed its controlled release.

PMID: 30584935 [PubMed - as supplied by publisher]