Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans

Cell Surf. 2021 Jun 23;7:100057. doi: 10.1016/j.tcsw.2021.100057. eCollection 2021 Dec.


Understanding the molecular mechanisms governing antifungal resistance is crucial for identifying new cellular targets for developing new antifungal therapeutics. In this study, we performed a transposon-mediated genome-wide genetic screen in haploid Candida albicans to identify mutants resistant to caspofungin, the first member of the echinocandin class of antifungal drugs. A mutant exhibiting the highest resistance possessed a transposon insertion that inactivates GPI7, a gene encoding the mannose-ethanolamine phosphotransferase. Deleting GPI7 in diploid C. albicans caused similar caspofungin resistance. gpi7Δ/Δ cells showed significantly elevated cell wall chitin content and enhanced phosphorylation of Mkc1, a core component of the PKC-MAPK cell-wall integrity pathway. Deleting MKC1 suppressed the chitin elevation and caspofungin resistance of gpi7Δ/Δ cells, but overexpressing the dominant inactive form of RHO1, an upstream activator of PKC-MAPK signaling, did not. Transcriptome analysis uncovered 406 differentially expressed genes in gpi7Δ/Δ cells, many related to cell wall construction. Our results suggest that GPI7 deletion impairs cell wall integrity, which triggers the cell-wall salvage mechanism via the PKC-MAPK pathway independently of Rho1, resulting in the compensatory chitin synthesis to confer caspofungin resistance.

PMID:34258484 | PMC:PMC8254124 | DOI:10.1016/j.tcsw.2021.100057