Kinetics of procalcitonin in infections caused by multidrug-resistant bacteria

Medicina (B Aires). 2020;80(6):599-605.


Procalcitonin guidance stimulates a reduction in the duration of antibiotic treatment in critically ill patients with a presumed bacterial infection, but its role in infections caused by multidrug-resistant bacteria has not been sufficiently explored. In this retrospective observational study, we analyzed procalcitonin curves of 32 patients with culture-confirmed ventilation-associated pneumonia (VAP) and catheter-related bloodstream infections (CRBSI) occurred during the period 11/1/2016 to 7/1/2019. Sixteen infections were caused by multidrug-resistant bacteria (10 CRBSI and 6 VAP) and other 16 by sensitive bacteria (10 CRBSI and 6 VAP). CRBSI generated by multidrug-resistant bacteria elicited significantly higher procalcitonin levels than CRBSI infections caused by sensitive bacteria (39 ± 30 υg/l vs. 10.7 ± 11 υg/l, p = 0.02). Patients with VAP caused by sensitive and multidrug-resistant bacteria elicited similar procalcitonin levels. The time to a decrease in procalcitonin level to less than 80% of the peak value or less than 0.5 υg/l upon effective antibiotic treatment was 7.2 ± 2.9 days in multidrug-resistant bacteria vs. 5 ± 1.8 days in sensitive bacteria (p = 0.03). In multidrug-resistant bacteria, the inflammatory response measured by procalcitonin is stronger and longer, even with an effective antibiotic treatment. However, the decline occurs before the conventional antibiotic scheme is completed. The potential application of antibiotic protocols guided by procalcitonin to these groups of patients grants further studies aimed to reduce exposure to antibiotics in critical multidrug-resistant infections.