Phenotypic screening of carbapenemases and associated β-lactamases in carbapenem-resistant Enterobacteriaceae.

Related Articles

Phenotypic screening of carbapenemases and associated β-lactamases in carbapenem-resistant Enterobacteriaceae.

J Clin Microbiol. 2012 Apr;50(4):1295-302

Authors: Birgy A, Bidet P, Genel N, Doit C, Decré D, Arlet G, Bingen E

Abstract
Dissemination of carbapenem resistance among Enterobacteriaceae poses a considerable threat to public health. Carbapenemase gene detection by molecular methods is the gold standard but is available in only a few laboratories. The aim of this study was to test phenotypic methods for the detection of metallo-β-lactamase (MBL)- or Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae and associated mechanisms of β-lactam resistance against a panel of 30 genotypically characterized carbapenem-resistant Enterobacteriaceae : 9 MBL, 7 KPC, 6 OXA-48, and 8 extended-spectrum β-lactamase (ESBL) or AmpC β-lactamases associated with decreased permeability. We used carbapenemase inhibitor-impregnated agar to test for carbapenem-resistant strains. Differences in the inhibition zone sizes of the meropenem, imipenem, ertapenem, and doripenem disks were measured between control and inhibitor (EDTA or phenylboronic acid [PBA] with or without cloxacillin)-impregnated Mueller-Hinton agar with a cutoff of 10 mm. All 9 MBL- and 7 KPC-producing Enterobacteriaceae were identified from the differences in zone size in the presence and absence of specific inhibitors, regardless of the carbapenem MICs and including isolates with low-level resistance to carbapenems. We also detected their associated β-lactam resistance mechanisms (11 ESBL-type and 5 class A β-lactamase 2b). No differences in zone size were observed for OXA-48-producing strains or other carbapenem resistance mechanisms such as ESBL and decreased permeability. We propose a new strategy to detect carbapenemases (MBL- and KPC-type) and associated mechanisms of β-lactam resistance (ESBL or class A β-lactamase 2b) by the use of inhibitor-impregnated agar. A rapid phenotypic detection of resistance mechanisms is important for epidemiological purposes and for limiting the spread of resistant strains by implementing specific infection control measures.

PMID: 22259214 [PubMed - indexed for MEDLINE]