Protective effect of Lactobacillus reuteri Lb11 from chicken intestinal tract against Salmonella Enteritidis SE05 in vitro

Antonie Van Leeuwenhoek. 2021 Sep 16. doi: 10.1007/s10482-021-01625-4. Online ahead of print.


Salmonella infections in eggs with increasing morbidity and mortality exhibit worldwide prevalence. The present study intends to evaluate the efficacy of Lactobacillus reuteri Lb11 (L. reuteri Lb11, isolated from chicken intestinal tract) in inhibiting the growth of multi-drug resistant (MDR) Salmonella Enteritidis SE05 (obtained from egg content). The cell-free cell lysates (CFCL) of L. reuteri Lb11 obtained by the agar spot test performed well on inhibition of the MDR (Multi-Drug Resistant) Salmonella Enteritidis SE05, The heat-inactivated (HI) fraction of L. reuteri Lb11 showed no inhibition activity. By co-culturing with L. reuteri Lb11 in vitro, the growth of S. Enteritidis SE05 decreased along with time, while, the pH value decreased significantly. Furthermore, In order to evaluate the mechanism of action of CFCL of L.reuteri Lb11, the genes related to the transcription level of AcrAB-TolC efflux pump, outer membrane protein OMPs genes and drug resistance genes have been quantified by real-time PCR, when the S. Enteritidis was SE05 exposed to the CFCL of L. reuteri Lb11 (1 × 1012 CFU/mL). Almost all of the AcrAB-TolC efflux pump genes, outer membrane protein genes and antibiotic resistance genes were down-regulated. Especially, the level of ramA, tetA and tetB genes were down-regulated -20.77, -15.85 and -12.42 folds, respectively. L. reuteri Lb11 can effectively prevent the formation of efflux pump to inhibit the production of multidrug-resistant Salmonella Enteritidis in eggs.

PMID:34529163 | DOI:10.1007/s10482-021-01625-4