Repurposing drugs for treatment of Mycobacterium abscessus: a view to a kill.

Related Articles

Repurposing drugs for treatment of Mycobacterium abscessus: a view to a kill.

J Antimicrob Chemother. 2020 Feb 04;:

Authors: Gumbo T, Cirrincione K, Srivastava S

BACKGROUND: The current treatment regimens recommended for Mycobacterium abscessus subspecies abscessus (Mab) pulmonary disease are not effective. We identified 16 drugs with potential to build new regimens, translating to 560 possible three-drug combination regimens.
OBJECTIVES: To determine MICs and efficacy of drugs from different antibiotic classes for treatment against Mab, in order to winnow down the potential drugs for combination therapy to tractable numbers, for future use in hollow-fibre studies.
METHODS: The MICs of levofloxacin, minocycline, meropenem, imipenem, tedizolid, bedaquiline, azithromycin, clarithromycin, amikacin, vancomycin, delafloxacin, tebipenem/avibactam and omadacycline were determined for 20 Mab isolates. In addition, concentration-response studies with tedizolid, bedaquiline, clarithromycin, amikacin, tebipenem/avibactam, cefdinir, faropenem, omadacycline and daunorubicin were performed and data were fitted to the inhibitory sigmoid Emax model. Efficacy was defined as maximal kill, expressed as cfu/mL kill below day 0 burden.
RESULTS: The lowest MICs among the 13 antibiotics were of bedaquiline, tebipenem/avibactam and omadacycline. The antibiotics that killed Mab below the day 0 burden were the anticancer agent daunorubicin (3.36 log10 cfu/mL), cefdinir (1.85 log10 cfu/mL), faropenem (2.48 log10 cfu/mL) and tebipenem/avibactam (1.71 log10 cfu/mL kill). The EC50 values of these drugs were 11.67, 9.52, 48.2 and 0.33 mg/L, respectively, below peak concentrations of these drugs.
CONCLUSIONS: The low MICs and efficacy at clinically achievable concentrations mean that tebipenem/avibactam, daunorubicin, omadacycline and bedaquiline give a view of components of a three-drug regimen likely to effectively kill Mab. We propose pharmacokinetic/pharmacodynamic studies to identify such a regimen and the doses to be combined.

PMID: 32016429 [PubMed - as supplied by publisher]