Structure-activity relationship and mechanism of flavonoids on the inhibitory activity of P-glycoprotein (P-gp)-mediated transport of rhodamine123 and daunorubicin in P-gp overexpressed human mouth epidermal carcinoma (KB/MDR) cells

Food Chem Toxicol. 2021 Jul 1:112381. doi: 10.1016/j.fct.2021.112381. Online ahead of print.


This study was aimed to investigate the inhibitory activity of flavonoids on P-glycoprotein (P-gp). Effects of 39 flavonoids on the cellular uptake (CU) of rhodamine123 (Rho) and daunomycin (DNR) were investigated in both parental KB and P-gp overexpressed KB/MDR cells. The inhibition mechanism of selected flavonoids was further investigated by measuring the ATPase activity and expression level of P-gp. Twelve flavonoids improved the uptake of Rho (↑RhoF) and nineteen flavonoids increased the uptake of DNR (↑DNRF) in KB/MDR cells with nine flavonoids overlapped. Structure-activity relationship (SAR) indicated that 8-OCH3, and 2'-OH have a negative effect on Rho and DNR transport. Whereas 5-OH, 5-OCH3, 6-OH, 7-OCH3, 3'-OH, and 4'-OH, are essential for inhibition of flavonoids on P-gp and reversing the resistance of Rho and DNR. Eleven selected flavonoids significantly induced the basal P-gp-ATPase activity but much lower than that induced by verapamil. Tangeretin, galangin, kaempferol, quercetin, and morin significantly reversed the ATPase activity stimulated by verapamil. Six of eleven flavonoids significantly decreased P-gp expression, whereas three flavonoids slightly increased P-gp expression. These results provide valuable information that flavonoids can effectively reverse multidrug resistance of P-gp-mediated transport of nutraceutical and drugs by co-administration.

PMID:34217736 | DOI:10.1016/j.fct.2021.112381