Treatment of infections due to resistant Staphylococcus aureus.

Related Articles

Treatment of infections due to resistant Staphylococcus aureus.

Methods Mol Biol. 2014;1085:259-309

Authors: Anstead GM, Cadena J, Javeri H

Abstract
This chapter reviews data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review covers findings reported in the English language medical literature up to January of 2013. Despite the emergence of resistant and multidrug-resistant S. aureus, we have seven effective drugs in clinical use for which little resistance has been observed: vancomycin, quinupristin-dalfopristin, linezolid, tigecycline, telavancin, ceftaroline, and daptomycin. However, vancomycin is less effective for infections with MRSA isolates that have a higher MIC within the susceptible range. Linezolid is probably the drug of choice for the treatment of complicated MRSA skin and soft tissue infections (SSTIs); whether it is drug of choice in pneumonia remains debatable. Daptomycin has shown to be non-inferior to either vancomycin or β-lactams in the treatment of staphylococcal SSTIs, bacteremia, and right-sided endocarditis. Tigecycline was also non-inferior to comparator drugs in the treatment of SSTIs, but there is controversy about whether it is less effective than other therapeutic options in the treatment of more serious infections. Telavancin has been shown to be non-inferior to vancomycin in the treatment of SSTIs and pneumonia, but has greater nephrotoxicity. Ceftaroline is a broad-spectrum cephalosporin with activity against MRSA; it is non-inferior to vancomycin in the treatment of SSTIs. Clindamycin, trimethoprim-sulfamethoxazole, doxycycline, rifampin, moxifloxacin, and minocycline are oral anti-staphylococcal agents that may have utility in the treatment of SSTIs and osteomyelitis, but the clinical data for their efficacy is limited. There are also several drugs with broad-spectrum activity against Gm-positive organisms that have reached the phase II and III stages of clinical testing that will hopefully be approved for clinical use in the upcoming years: oritavancin, dalbavancin, omadacycline, tedizolid, delafloxacin, and JNJ-Q2. Thus, there are currently many effective drugs to treat resistant S. aureus infections and many promising agents in the pipeline. Nevertheless, S. aureus remains a formidable adversary, and despite our deep bullpen of potential therapies, there are still frequent treatment failures and unfortunate clinical outcomes. The following discussion summarizes the clinical challenges presented by MRSA, the clinical experience with our current anti-MRSA antibiotics, and the gaps in our knowledge on how to use these agents to most effectively combat MRSA infections.

PMID: 24085702 [PubMed - indexed for MEDLINE]